初級(★)	…問題把握原	度をチェック!
-------	--------	---------

- 1. 次の問いに答えなさい。
- (1)12でわっても18でわっても割りきれる整数のうち、最も小さい整数を求めなさい。
- (2)12をわっても18をわっても割りきれる整数のうち、最も大きい整数を求めなさい。

【あなたの考え方と答え】		
(1)		
	答え	
(2)		
	答え	
	H / 5	

初級(★)…問題把握度をチェック! 解答例

- 1. 次の問いに答えなさい。
- (1)12でわっても18でわっても割りきれる整数のうち、最も小さい整数を求めなさい。
- (2)12をわっても18をわっても割りきれる整数のうち、最も大きい整数を求めなさい。

【ポイント】

「問題文 → □を使ったわり算の式」

【目的】

「割られる数」を求めるのか「割る数」を求めるのかを明確にします。

(1)の解答例

「最も小さい整数」なので、最小公倍数を求めます。

(2)の解答例

「最も大きい整数」なので、最大公約数を求めます。

中級(★★)…基礎知識定着度

- 2. 次の問いに答えなさい。
- (1) 12でわっても18でわっても 3 あまる整数のうち、小さい方から 2 番目の整数を求めなさい。
- (2)12でわると 9 あまり、18でわると15あまる整数のうち、最も小さい整数を求めなさい。

【 あなたの考え方と答え 】 (1)	
	nte =
(2)	答え
	答え

中級(★★)…基礎知識定着度 解答例

- 2. 次の問いに答えなさい。
- (1)12でわっても18でわっても3あまる整数のうち、小さい方から2番目の整数を求めなさい。
- (2)12でわると9あまり、18でわると15あまる整数のうち、最も小さい整数を求めなさい。

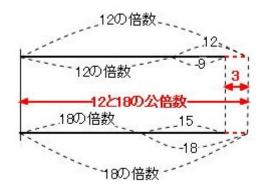
【ポイント】

「あまり共通」、「不足共通」

【目的】

「あまりが等しい」、「同数を加えればわりきれる」、「そのどちらでもない」に分類し、 処理の迅速化を可能にします。

(1)の解答例


- $\Box \div 12 = (整数)$ あまり 3 $\rightarrow \Box = 12 \times (整数) + 3 \rightarrow \Box = 12$ の倍数 + 3 $\rightarrow \Box = 12$ の倍数 + 3 $\rightarrow \Box = 12$ の倍数 + 3
- □÷18=(整数)あまり3 → □=18×(整数)+3 → □=18の倍数+3

あまり共通 → 公倍数+あまり

図より、「 \square = 36 × \diamondsuit + 3 」とわかるので、小さい方から 2 番目の整数は、36 × 1 + 3 = 39

(2)の解答例

不足共通 → 公倍数一不足

図より、「□=36×◇-3」とわかるので、最も小さい整数は、36×1-3=<u>33</u>

上級	(★★★)	…理解度

3.3でわると2あまり、4でわると1あまり、5でわると3あまる整数のうち、1000に 最も近い数を求めなさい。

【 あなたの考え方と答え 】	
	答え

上級(★★★)…理解度

3.3でわると2あまり、4でわると1あまり、5でわると3あまる整数のうち、1000に 最も近い数を求めなさい。

【ポイント】

「最小(書き出し)+公倍数」

【目的】

最小の整数に公倍数を加えることの意味を理解し、応用力を育てます。

解答例

「3でわると2あまり」 \rightarrow 3の倍数+2 「4でわると1あまり」 \rightarrow 4の倍数+1 「5でわると3あまり」 \rightarrow 5の倍数+3 のように3つあるときは、まず2つだけ選びます。

3の倍数は5の倍数よりも個数が多いので、個数の少ない4の倍数と5の倍数を選んで、調べやすくします。

下の表のように、「5でわると3あまる数(5の倍数+3)」を3、8、13…と書き出しながら、「4でわると1あまる数(4の倍数+1)」にあてはまるかどうかを調べ、最小の13を見つけます。

次に、 $5 \ge 4$ の最小公倍数=20ずつ加えながら、「3 でわると2 あまる数(3 の倍数+2)」にあてはまるかどうかを調べ、最小の53を見つけます。

	_	5	5	- 20	+ 20
5の倍数+3	3	8	13	-	~
	↓	↓	↓	33	53
4の倍数+1	×	×	0		
			ļ	↓	↓
3の倍数+2	0.000		×	×	0

最後に、1000に最も近い「53+60×◇」を、さがします。 1000÷60=16.6··· → 60×16=1013